GOLM METABOLOME DATABASE

Metabolite Profiling Experiments

The GC-MS metabolite profiling experiments given below are made publicly available to get feedback from the community. The relative metabolite concentrations are normalised according to fresh weight (or comparable quantitative data, such as volume, cell count, etc.) and internal standards (e.g. ribotol). Although these details are accessible within the GMD, they are not made available on the web site so far. For these details please refer to the publication. As it is our intention to increase the breadth GMD’s experiment repository in terms of organisms, organs and stresses, we actively work on cross experiment normalisation and thus, profile data and data representation might change in the future without any further notice. For maximal quality assessment, all experiments are described using the XEML framework (see tree below), while the GC-MS chromatograms are processed using the TagFinder software.
Title
Factor(s)GenusAccessionsReplica GroupsSamplesMetabolites
Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803
Germplasm, TimeSynechocystis.PCC393568
15 experiment(s)

Inorganic Carbon Limitation in Cells of the Wild Type and Photorespiratory Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803 contact: kopka@mpimp-golm.mpg.de description: The amount of inorganic carbon represents one of the main environmental factors determining productivity of photoautotrophic organisms. Using the model cyanobacterium Synechocystis sp. PCC 6803, we performed a first metabolome study with cyanobacterial cells shifted from high CO2 (5% in air) into conditions of low CO2 (LC; ambient air with 0.035% CO2). Using gas chromatography-mass spectrometry, 74 metabolites were reproducibly identified under different growth conditions. Shifting wild-type cells into LC conditions resulted in a global metabolic reprogramming and involved increases of, for example, 2-oxoglutarate (2OG) and phosphoenolpyruvate, and reductions of, for example, sucrose and fructose-1,6-bisphosphate. A decrease in Calvin-Benson cycle activity and increased usage of associated carbon cycling routes, including photorespiratory metabolism, was indicated by synergistic accumulation of the fumarate, malate, and 2-phosphoglycolate pools and a transient increase of 3-phosphoglycerate. The unexpected accumulation of 2OG with a concomitant decrease of glutamine pointed toward reduced nitrogen availability when cells are confronted with LC. Despite the increase in 2OG and low amino acid pools, we found a complete dephosphorylation of the PII regulatory protein at LC characteristic for nitrogen-replete conditions. Moreover, mutants with defined blocks in the photorespiratory metabolism leading to the accumulation of glycolate and glycine, respectively, exhibited features of LC-treated wild-type cells such as the changed 2OG to glutamine ratio and PII phosphorylation state already under high CO2 conditions. Thus, metabolome profiling demonstrated that acclimation to LC involves coordinated changes of carbon and interacting nitrogen metabolism. We hypothesize that Synechocystis has a temporal lag of acclimating carbon versus nitrogen metabolism with carbon leading. start date: 2013-01-24 experiment Id: cf0f592d-7883-4134-916f-3af8f0ad1c98 links: metabolite profile  MapMan pathway  XEML experimental description  ISA-Tab export  TagList Metabolite raw export  TagList Metabolite norm export  TagList Analyte raw export  TagList Analyte norm export  TagList MST raw export
Skip Navigation Links.
observation point: OP 2 observation time: 1.00:00:00 [days . hours : minutes : seconds]
TimeNameValueDurationUnit
initiationCarbonDioxide5 %
01dCarbonDioxide0.038 %
2 experimental conditions(s)
This tree schematises the experimental design of a single metabolite profiling experiment with the x-axis representing the time scale. Branches of the tree are used to describe the plant’s environmental condition. Recorded environmental conditions are either given to describe the general experimental setup and to support cross experiment comparisons, or to indicate the specific stress type. A “salt stress experiment” is described using different salt concentrations. Clicking the nodes of the tree, quantitative environmental conditions (e.g. temperature, salt concentrations, humidity, etc.) describing the plant’s environment can be inspected in the right table. Unfortunately, due to the limitations of the current html based visualisation, the scaling of the tree's branches is not proportional to the real length of time. Green tagged observation points (OP) represent sampling time points. Results in the data analysis (see heat map or MapMan links in table on top) correspond to these observation points. Please note that observation point names (OP1, OP2, etc.) do not relate to each other. Instead, use the description of the observation points to identify potential candidates for cross experiment profile comparison.
service last updated 31/08/2021 © 2008-2014 Golm Metabolome Database - All rights reserved
Top